
Entire Event Management API
This section covers the following topics:

Introduction
API for Natural - platforms OS/390, VSE/ESA and BS2000/OSD
API for C - platform Windows 3.x

Introduction
The Entire Event Management API enables applications to forward exception messages, so-called events, to the
Entire Event Management server for further analysis. The server determines by means of filter and automation rule
definitions provided by the administrator whether the event must be logged in the database and which automated
actions must be executed.

The API functions are designed as client/server functions. This means that each function can be split into a client part
and a server part. The following figure illustrates this principle of operation:

The client part of the API is provided on the mainframe platforms OS/390, VSE/ESA and BS2000/OSD with a
Natural CALLNAT interface and on the Windows 3.x platform with a C language call interface.

The server part, called API Receiver, is provided on the mainframe platforms only. It maps the API event message
format to an internal message format, which is then forwarded to the Analysis Task of the Entire Event Management
Server via the Entire System Server view EVENTING. The API Receiver registers as a service with Entire Broker. It
can run as a subtask of the Entire Event Management Server or as a separate batch job which does not need to run on
the same network node as the Entire Event Management Server.

If the client application is located on the same network node as the Entire Event Management Server, it can be
specified in a configuration file that the API Receiver service is local for the client. In this case, the integration
mechanism provided with Entire Broker / Entire Net-work is not involved in the communication. The service which
forwards the event message to the Analysis Task via EVENTING view is then called directly by the API client, thus
reducing the communication overhead.

1Copyright Software AG 2001

Entire Event Management APIEntire Event Management API

API for Natural - platforms OS/390, VSE/ESA and
BS2000/OSD

Call Format

CALLNAT ’NCL_API’
 USING FUNCTION
 TARGET_SERVICE
 BUFFER
 ERROR_INFO
 RETURN_CODE

where (see also member DOCPI00A in library SYSNCLPI):

Name Format Usage

FUNCTION I2 Input, mandatory.
An integer field whose value relates to an API function.

TARGET_SERVICE A16 Input, mandatory.
The name of the API Receiver service. This name must be registered in a
configuration file (see Configuring the API Receiver).

BUFFER A1(1:4096) Input, mandatory.
An array which contains a structure specific to the function.

ERROR_INFO A1(1:200) Output.
A structure which contains error information provided by deeper call levels.

RETURN_CODE I2 Output.
An integer field containing a return code (see Return Codes for the format and
content).

API Functions

The following functions are currently supported (defined in LDA NCLPI--E, see also member DOCPI--E in library
SYSNCLPI):

Function Value Description

NCL_FC_EVFORWARD 1 Forward an event message to the Entire Event Management Server.

NCL_FC_STOPSERVICE 9999 Stop the API Receiver service.

NCL_FC_EVFORWARD - 1

Use this function to forward an event message to the Entire Event Management Server. Provide values for the
parameters of the following data structure (defined in LDA NCLPI01L, see also member DOCPI01L in library
SYSNCLPI) and put this structure into the BUFFER parameter:

Copyright Software AG 20012

Entire Event Management APIAPI for Natural - platforms OS/390, VSE/ESA and BS2000/OSD

Name Format Usage

EV_MSGID A10 Input, mandatory. This attribute identifies the event message.

EV_TEXT A180 Input, optional. The message text. This attribute can be empty especially when a
language-dependent representation is required and dynamic substitute strings are
provided with EV_TEXT_VAR1 .. 5.

EV_CATEGORY A32 Input, optional. This attribute can be used as classification criterion.

EV_SEVERITY A1 Input, optional. This attribute can be used to indicate the severity of the event.

EV_SOURCE_NODE A32 Input, optional. The originator network node where the event occurred.

EV_SOURCE_APPL A32 Input, optional. The originator application which reports the event.

EV_JOBNAME A8 Input, optional. The name of the originating job which reports the event

EV_JOBID A8 Input, optional. The identifier of the originating job which reports the event.

EV_TEXT_VAR1 A64 Input, optional. A text string which is to be dynamically replaced in the
language-dependent message text during representation.

EV_TEXT_VAR2 A64 Input, optional. A text string which is to be dynamically replaced in the
language-dependent message text during representation.

EV_TEXT_VAR3 A64 Input, optional. A text string which is to be dynamically replaced in the
language-dependent message text during representation.

EV_TEXT_VAR4 A64 Input, optional. A text string which is to be dynamically replaced in the
language-dependent message text during representation.

EV_TEXT_VAR5 A64 Input, optional. A text string which is to be dynamically replaced in the
language-dependent message text during representation.

NCL_FC_STOPSERVICE - 9999

Use this function to stop the API Receiver service. Be sure that there are no other clients which still need the API
Receiver service. To perform this function successfully, you must fill the BUFFER parameter with the constant value
NCL_INTERNAL_CALL (see also members DOCPI00A and DOCPI--E in library SYSNCLPI).

Return Codes

The following return codes are sent back to the API caller (defined in LDA NCLPI--E, see also member DOCPI--E
in library SYSNCLPI):

0 NCL_RT_NORMAL

Expl.: Successful execution.

Actn.: None.

1 NCL_RT_IVFUNC

Expl.: Invalid function.

Actn.:
Provide a valid function in the parameter FUNCTION (see DOCPI--E in library SYSNCLPI for valid
values).

3Copyright Software AG 2001

Return CodesEntire Event Management API

2 NCL_RT_IVSERVICE

Expl.: Invalid service.

Actn.:
Provide a valid service name in the parameter TARGET_SERVICE. This name must be registered in the
configuration file (see the subsection Configuring the API Receiver).

3 NCL_RT_IVESYNODE

Expl.: Invalid Entire System Server node.

Actn.:
Provide a valid value for the configuration parameter ESY_Node in the configuration file (see the
subsection Configuring the API Receiver).

4 NCL_RT_RUNERR

Expl.:
A runtime error has occurred. More detailed information (for example, original error code/text, erroneous
program and line of program, reporting component) is provided in the structure ERROR_INFO (see
member DOCPI00A in library SYNCLPI for an explanation).

Actn.:

Analyze the content of ERROR_INFO and act accordingly. Possible values for ERROR_CLASS:

N = Natural runtime error.
P = a runtime error reported by Entire System Server.
S = a runtime error reported by the SAT component.

5 NCL_RT_COMMERR

Expl.:
An error has occurred in the communication infrastructure. More detailed information (for example,
original error code/text, erroneous program and line of program, reporting component) is provided in the
structure ERROR_INFO (see member DOCPI00A in library SYNCLPI for an explanation).

Actn.:
Analyze the content of ERROR_INFO and act accordingly. Possible values for ERROR_CLASS:

S = a communication error reported by the SAT component.

6 NCL_RT_BACKERR

Expl.:
An error has occurred in the API back-end. More detailed information (for example, original error
code/text, erroneous program and line of program, reporting component) is provided in the structure
ERROR_INFO (see member DOCPI00A in library SYNCLPI for an explanation).

Actn.:

Analyze the content of ERROR_INFO and act accordingly. Possible values for ERROR_CLASS:

I an internal error detected by a back-end program
U a user error detected by a back-end program.

7 NCL_RT_MAXCONV_EXCEEDED

Expl.:
The maximum number of client conversations which the API Receiver service can handle in parallel
(currently 10) has been exceeded.

Actn.: Retry the client request after a short wait.

Copyright Software AG 20014

Entire Event Management APIReturn Codes

8 NCL_RT_ALIENREQ

Expl.:
The client has provided a value for the parameter TARGET_SERVICE which is different from the name
under which the API Receiver service was started.

Actn.:
Be sure to use identical names for referring to the API Receiver service in both the client and the server
environment (see also the subsections Configuring the API Receiver and Starting the API Receiver).

99 NCL_RT_SERVICE_STOPPED

Expl.:
This return code informs the client that the API Receiver service has been stopped because of its previous
NCL_FC_STOPSERVICE request.

Actn.: None.

100 NCL_RT_IVVERSION

Expl.:
This code is returned by the back-end or server part of the API and means that the version of the client part
is not compatible with the version of the server part.

Actn.:
Make sure that the installed Entire Event Management versions of the client and the server part are always
compatible.

101 NCL_RT_IVMSGID

Expl.: The content of the attribute EV_MSGID in the parameter BUFFER is not valid.

Actn.: Provide a non-blank value for the attribute EV_MSGID.

Examples

The program XAPI01-P in library SYSNCLPI provides an example of how to use the Entire Event Management
API.

Configuring the API Receiver

The API Receiver is a service which registers with Entire Broker. Entire Broker identifies this service by the
attributes CLASS, SERVER and SERVICE. The server must pass these attributes to Entire Broker to REGISTER
requests. The client must pass these attributes to Entire Broker to SEND requests.

The SAT component facilitates the addressing and configuration of services by allowing the service to be addressed
with a symbolic name, which is registered in a text member of library SYSSATU (see also subsection SAT in
Client/Server Environments in Section Installing System Automation Tools) of the SAT Installation and
Customization Documentation. The syntax for the symbolic name is as follows:

[<member-name>.]<section-name>.

For example, the name: NCLPARMS.ncl_api addresses section ncl_api in member NCLPARMS of library
SYSSATU. If the <member-name> token is omitted, it is assumed that the section is located in the text member
SATSRV.

5Copyright Software AG 2001

Configuring the API ReceiverEntire Event Management API

SATSRV Configuration Parameters

Name Description

TYPE Type of communication. Must currently be ACI.

SERVER-CLASS Corresponds to the parameter CLASS in the SDPA structure.

SERVER-NAME Corresponds to the parameter SERVER in the SDPA structure.

SERVICE Corresponds to the parameter SERVICE in the SDPA structure.

USER-ID Corresponds to the parameter UID in the SDPA structure.

WAIT-TIME Corresponds to the parameter WAIT in the SDPA structure.

Trace This toggle can have the values on or off. If set to on, trace messages are produced for better
diagnostics.

Service_Location

Indicates whether the API Receiver service is located locally (value l) or remotely(value r) to
the client. If it is located locally, the back-end modules are called directly from the client part
of the API, and the Entire Broker communication infrastructure is not involved.

Local_Node The value provided here identifies the network node where the client runs and is takenas
default for the event message attribute EV_SOURCE_NODE.

ESY_Node Node number of the Entire System Server nucleus to be used by the APIReceiver service.

Example: SATSRV Parameters

ncl_api SATSRV TYPE=ACI
 BROKER-ID=BKR034
 SERVER-CLASS=NCL
 SERVER-NAME=IBM1
 SERVICE=EventReceiver
 USER-ID=huhu
 WAIT-TIME=30S
 Trace=on
 Service_Location=r
 Local_Node=ibm1
 ESY_Node=114

Starting the API Receiver

The API Receiver service can be started in two different ways:

as subtask of the Entire Event Management Server.

In this case, the parameter API Receiver Service of the Miscellaneous Server Parameters group must contain the
name of the service as registered in the library SYSSATU. The service is then started automatically during
startup of Entire Event Management Server, and its status can be checked with the Server Statistic Monitor.

as a separate batch job.

In this case, the service does not necessarily run on the same network node as the Entire Event Management
Server. The member E-PIRCVR in the NCLnnn.SRCE library provides an sample JCL skeleton.

Make sure that the LFILE assignment for Entire Event Management System File 2 (LFILE number 202)
corresponds to the SERVSYSF parameter of the Entire Event Management Server to which the API Receiver
service will forward the event message, because SERVSYSF is used to uniquely address the correct
EVENTING message queue.

Copyright Software AG 20016

Entire Event Management APIStarting the API Receiver

API for C - platform Windows 3.x

ncl_api - NCL_API

Send client requests to the API Receiver service.

Synopsis

#include <ncl_api.h>
 void ncl_api (NCL_API *arg);
 typedef struct NCL_API
 {
 long int function;
 unsigned char target_service[16];
 unsigned char buffer[4096];
 unsigned char error_info[200];
 long int return_code;
 } NCL_API

Description

The client request specified in the buffer argument according to the desired function is sent to the API Receiver
service addressed by the target_service argument.

Arguments

Argument Description

function Input, mandatory. An integer field whose value relates to an API function.

target_service Input, mandatory. Specifies The name of the API Receiver service. This name must be registered in
a configuration file (see Configuring the API Client).

buffer Input, mandatory. Contains a structure specific to the function.

error_info Output. A structure which contains error information provided by deeper call levels.

return_code Output. An integer field containing a return code (see Return Codes for the format and content).

API Functions

The following function codes are currently supported (defined in header file ncl_api.h):

Function Value Description

NCL_FC_EVFORWARD 1 Forward an event message to the Entire Event Management Server.

NCL_FC_STOPSERVICE 9999 Stop the API Receiver service.

They correspond to the following functions which are also defined as prototypes in ncl_api.h.

ncl_forward_event - NCL_API01

Forward an event message to the Entire Event Management Server.

7Copyright Software AG 2001

API for C - platform Windows 3.xEntire Event Management API

Synopsis

#include <ncl_api.h>
void ncl_forward_event (NCL_API01 *arg);
typedef struct NCL_API01
 {
 unsigned char target_service[16];
 unsigned char buffer[4096];
 unsigned char error_info[200];
 long int return_code;
 } NCL_API01

Description

Use this function to forward an event message to the Entire Event Management Server. Provide values for the items
of the following data structure (defined in header file ncl_api01.h) and put this structure into the buffer argument:

typedef struct NCL_EVENT
 {
 unsigned char ev_msgid [10];
 unsigned char ev_text [180];
 unsigned char ev_category [32];
 unsigned char ev_severity;
 unsigned char ev_source_node [32];
 unsigned char ev_source_appl [32];
 unsigned char ev_jobname [8];
 unsigned char ev_jobid [8];
 unsigned char ev_text_var1[64];
 unsigned char ev_text_var2[64];
 unsigned char ev_text_var3[64];
 unsigned char ev_text_var4[64];
 unsigned char ev_text_var5[64];
 } NCL_EVENT

Arguments

Argument Description

ev_msgid Input, mandatory. This attribute identifies the event message.

ev_text Input, optional. The message text. This attribute can be empty especially when
language-dependent representation is required and dynamic substitute strings are provided with
ev_text_var1.. 5.

ev_category Input, optional. This attribute can be used as classification criterion.

ev_severity Input, optional. This attribute can be used to indicate the severity of the event.

ev_source_node Input, optional. The originator network node where the event occurred.

ev_source_appl Input, optional. The originator application which reports the event.

ev_jobname Input, optional. The name of the originating job which reports the event.

ev_jobid Input, optional. The identifier of the originating job which reports the event

ev_text_var1.. 5 Input, optional. A text string which is to be dynamically replaced in the language-dependent
message text during representation.

Copyright Software AG 20018

Entire Event Management APIAPI Functions

ncl_stop_service - NCL_API01

Stop the API Receiver service.

Synopsis

#include <ncl_api.h>
void ncl_stop_service (NCL_API01 *arg);
typedef struct NCL_API01
 {
 unsigned char target_service[16];
 unsigned char buffer[4096];
 unsigned char error_info[200];
 long int return_code;
 } NCL_API01

Description

Use this function to stop the API Receiver service. Be sure that there are no other clients which still need the API
Receiver service. To perform this function successfully, you must fill the buffer argument with the constant value
NCL_INTERNAL_CALL (defined in header file ncl_api.h).

Return Codes

The following return codes are sent back to the API caller. They are defined in header file ncl_api.h.

0 NCL_RT_NORMAL

Expl.: Successful execution.

Actn.: None.

1 NCL_RT_IVFUNC

Actn.: Provide a valid function in the argument function.

2 NCL_RT_IVSERVICE

Actn.:
Provide a valid service name in the argument target_service. This name must be registered in the
configuration file (see the subsection Configuring the API Client).

3 NCL_RT_IVESYNODE

Expl.: Invalid Entire System Server node.

Actn.:
Provide a valid value for the configuration parameter ESY_Node in the configuration file of the API
Receiver environment (see the subsection Configuring the API Receiver).

4 NCL_RT_RUNERR

9Copyright Software AG 2001

Return CodesEntire Event Management API

Expl.:
A runtime error has occurred. More detailed information (for example, original error code/text, erroneous
program and line of program, reporting component) is provided in the structure error_info (see header file
ncl_api.h for an explanation).

Actn.:

Analyze the content of error_info and act accordingly. Possible values for error_class:

N = Natural runtime error.
P = a runtime error reported by Entire System Server.
S = a runtime error reported by the SAT component.

5 NCL_RT_COMMERR

Expl.:
An error has occurred in the communication infrastructure. More detailed information (for example,
original error code/text, erroneous program and line of program, reporting component) is provided in the
structure error_info (see header file ncl_api.h for an explanation).

Actn.:
Analyze the content of error_info and act accordingly. Possible values for error_class:

S a communication error reported by the SAT component.

6 NCL_RT_BACKERR

Expl.:
An error has occurred in the API back-end. More detailed information (for example, original error
code/text, erroneous program and line of program, reporting component) is provided in the structure
error_info (see header file ncl_api.h for an explanation).

Actn.:

Analyze the content of error_info and act accordingly. Possible values for error_class:

I an internal error detected by a back-end program.
U a user error detected by a back-end program.

7 NCL_RT_MAXCONV_EXCEEDED

Expl.:
The maximum number of client conversations which the API Receiver service can handle in parallel
(currently 10) has been exceeded.

Actn.: Retry the client request after a short wait.

8 NCL_RT_ALIENREQ

Expl.:
The client has provided a value for the argument target_service which is different from the name under
which the API Receiver service was started.

Actn.:
Be sure to use identical names for referring to the API Receiver service in both the client and the server
environment (see also the subsections Configuring the API Receiver and Starting the API Receiver).

99 NCL_RT_SERVICE_STOPPED

Expl.:
This return code informs the client that the API Receiver service has been stopped because of its previous
NCL_FC_STOPSERVICE request.

Actn.: None.

Copyright Software AG 200110

Entire Event Management APIReturn Codes

100 NCL_RT_IVVERSION

Expl.:
This code is returned by the back-end or server part of the API and means that the version of the client part
is not compatible with the version of the server part.

Actn.:
Make sure that the installed Entire Event Management versions of the client and the server part are always
compatible.

101 NCL_RT_IVMSGID

Expl.: The content of the attribute ev_msgid in the buffer argument is not valid.

Actn.: Provide a non-blank value for the attribute ev_msgid.

Examples

The program xapi01.c,contained on the installation diskette, provides an example of how to use the Entire Event
Management API. The executable program xapi01.exe can be invoked as follows (synopsis):

xapi01 -f <function> -s<target_service> -i<ev_msgid> -t<ev_text>

where function, target_service, ev_msgid and ev_text correspond to the arguments and attributes described above.

Configuring the API Client

On the API client site, the way in which the API Receiver service is addressed and used must be customized. The
API Receiver is a service which registers with Entire Broker. Entire Broker identifies this service by the attributes
CLASS, SERVER and SERVICE. The server must pass these attributes to Entire Broker to REGISTER requests.
The client must pass these attributes to Entire Broker to SEND requests.

The SAT component facilitates the addressing and configuration of services by allowing the service to be addressed
with a symbolic name, which refers to a section defined in the sat.ini file located in the SAT directory on the API
client site.

The following configuration parameters can be specified in the sat.ini file:

Name Description

Type Type of communication. Must currently be ACI.

BrokerID Corresponds to the parameter BROKER-ID in the Entire Broker attribute file and SDPA structure.

Class Corresponds to the parameter CLASS in the SDPA structure.

Server Corresponds to the parameter SERVER in the SDPA structure.

Service Corresponds to the parameter SERVICE in the SDPA structure.

UserID Corresponds to the parameter UID in the SDPA structure.

WaitTime Corresponds to the parameter WAIT in the SDPA structure.

Trace This toggle can have the values on or off. If set to on, trace messages are produced forbetter
diagnostics.

LocalNode The value provided here identifies the network node where the client runs and is takenas default for
the event message attribute ev_source_node.

11Copyright Software AG 2001

Configuring the API ClientEntire Event Management API

Example: sat.ini Parameters for API Receiver

[ncl_api]
Type=ACI
BrokerID=BKR034
Class=NCL
Server=IBM1
Service=EventReceiver
UserID=huhu
WaitTime=30S
Trace=on
LocalNode=pchka

Copyright Software AG 200112

Entire Event Management APIConfiguring the API Client

	Entire Event Management API
	Introduction
	API for Natural - platforms OS/390, VSE/ESA and BS2000/OSD
	Call Format
	API Functions
	NCL_FC_EVFORWARD - 1
	NCL_FC_STOPSERVICE - 9999

	Return Codes
	0 NCL_RT_NORMAL
	1 NCL_RT_IVFUNC
	2 NCL_RT_IVSERVICE
	3 NCL_RT_IVESYNODE
	4 NCL_RT_RUNERR
	5 NCL_RT_COMMERR
	6 NCL_RT_BACKERR
	7 NCL_RT_MAXCONV_EXCEEDED
	8 NCL_RT_ALIENREQ
	99 NCL_RT_SERVICE_STOPPED
	100 NCL_RT_IVVERSION
	101 NCL_RT_IVMSGID

	Configuring the API Receiver
	SATSRV Configuration Parameters
	Example: SATSRV Parameters

	Starting the API Receiver

	API for C - platform Windows 3.x
	ncl_api - NCL_API
	Synopsis
	Description
	Arguments

	API Functions
	ncl_forward_event - NCL_API01
	Synopsis
	Description
	Arguments
	ncl_stop_service - NCL_API01
	Synopsis
	Description

	Return Codes
	0 NCL_RT_NORMAL
	1 NCL_RT_IVFUNC
	2 NCL_RT_IVSERVICE
	3 NCL_RT_IVESYNODE
	4 NCL_RT_RUNERR
	5 NCL_RT_COMMERR
	6 NCL_RT_BACKERR
	7 NCL_RT_MAXCONV_EXCEEDED
	8 NCL_RT_ALIENREQ
	99 NCL_RT_SERVICE_STOPPED
	100 NCL_RT_IVVERSION
	101 NCL_RT_IVMSGID

	Configuring the API Client
	Example: sat.ini Parameters for API Receiver

